Role of the Beta Catenin Destruction Complex in Mediating Chemotherapy-Induced Senescence-Associated Secretory Phenotype
نویسندگان
چکیده
Cellular senescence is considered as a tumor suppressive mechanism. Recent evidence indicates however that senescent cells secrete various growth factors and cytokines, some of which may paradoxically promote cancer progression. This phenomenon termed senescence-associated secretory phenotype (SASP) must be inhibited in order for anti-proliferative agents to be effective. The present study was designed to determine whether the β-catenin destruction complex (BCDC), known to integrate the action of various growth factors and cytokines, would represent a suitable target to inhibit the activity of SASP components. For this, we carried out experiments to determine the effect of drug-induced senescence on secretion of SASP, β-catenin transactivation, and the relationship between these processes. Moreover, genetic and pharmacological approaches were used to define the implication of BCDC in mediating the effects of SASP components on cell migration and resistance to drugs. The findings indicate that drug-induced senescence was associated with expression of various Wnt ligands in addition to previously known SASP components. Beta catenin transactivation and expression of genes implicated in epithelial-mesenchymal transition (EMT) also increased in response to drug-induced SASP. These effects were prevented by Pyrvinium, a recently described activator of BCDC. Pyrvinium also suppressed the effects of SASP on cell migration and resistance to doxorubicin. Together, these findings provide insights on the potential role of BCDC in mediating the effects of drug-induced SASP on cancer cell invasion and resistance to therapy, and suggest that targeting this pathway may represent an effective approach to enhance the activity of current and prospective anti-cancer therapeutics.
منابع مشابه
Effects of alpha-mangostin on memory senescence induced by high glucose in human umbilical vein endothelial cells
Objective(s): Hyperglycemia induces cellular senescence in various body cells, such as vascular endothelial cells. Since the vessels are highly distributed in the body and nourish all tissues, vascular damages cause diabetes complications such as kidney failure and visual impairment. Alpha-mangostin is a xanthone found in mangosteen fruit with protective effects in met...
متن کاملRhoA-mediated signaling in Notch-induced senescence-like growth arrest and endothelial barrier dysfunction.
OBJECTIVE Notch signaling has a critical role in vascular development and morphogenesis. Activation of Notch in endothelial cells led to a senescence-like phenotype with loss of barrier function. Our objective was to understand the molecular pathways mediating this phenotype. METHODS AND RESULTS Human primary endothelial cells increase expression of Notch receptors and ligands during propagat...
متن کاملP-58: Secreted Frizzeled Related Protein Type-4as an Inducer of Apoptosis and Terminal Differentiationof Rat Granulosa Cells
Background: Involvement of Wnt proteins and one of its antagonist known as secreted Frizzled Related Protein type-4 (sFPRP-4) was reported in rodent ovarian follicular development. Other studies showed an ap- Abstracts of the 11th Royan International Congress on Reproductive Biomedicine 7 7 International Journal of Fertility & Sterility (IJFS), Vol 4, Suppl 1, Summer 2010 optotic-associated exp...
متن کاملTumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype.
Cellular senescence suppresses cancer by preventing the proliferation of cells that experience potentially oncogenic stimuli. Senescent cells often express p16(INK4a), a cyclin-dependent kinase inhibitor, tumor suppressor, and biomarker of aging, which renders the senescence growth arrest irreversible. Senescent cells also acquire a complex phenotype that includes the secretion of many cytokine...
متن کاملتاثیر سیاهدانه در فعالیت آنزیمهای متابولیزهکننده سموم و سطح پروتئین بتا کاتنین در رتهای تحت تیمار با دیمتیلهیدرازین
Background and Objective: Dimethylhydrazine (DMH) is metabolized to methyldiazonium by cytochrome p450 (CYP 450) in liver that increases some oncogenes expression and via beta catenin mutation and prevention of its destruction. Materials and Methods: In this study, 48 rats were divided into 6 groups. Colon cancer was induced by DMH injection (20 mg/kg b.w.)(s.c.) once a week for 18 weeks. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012